Overexpression of MIZU-KUSSEI1 enhances the root hydrotropic response by retaining cell viability under hydrostimulated conditions in Arabidopsis thaliana.

نویسندگان

  • Yutaka Miyazawa
  • Teppei Moriwaki
  • Mayumi Uchida
  • Akie Kobayashi
  • Nobuharu Fujii
  • Hideyuki Takahashi
چکیده

Because of their sessile nature, plants evolved several mechanisms to tolerate or avoid conditions where water is scarce. The molecular mechanisms contributing to drought tolerance have been studied extensively, whereas the molecular mechanism underlying drought avoidance is less understood despite its importance. Several lines of evidence showed that the roots sense the moisture gradient and grow toward the wet area: so-called hydrotropism. We previously identified MIZU-KUSSEI (MIZ) 1 and MIZ2/GNOM as genes responsible for this process. To gain new insight into the molecular mechanism of root hydrotropism, we generated overexpressors of MIZ1 (MIZ1OEs) and analyzed their hydrotropic response. MIZ1OEs had a remarkable enhancement of root hydrotropism. Furthermore, a greater number of MIZ1OE root cells remained viable under hydrostimulated conditions than those of the wild type, which might contribute to retaining root growth under hydrostimulated conditions. Although overexpression of MIZ1 also caused a slight decrease in the root gravitropic response, it was not attributable to the enhanced hydrotropic response. In addition, miz2 mutation or the auxin response inhibitor nullified the enhanced hydrotropic response in MIZ1OEs. Furthermore, the expression of MIZ1 did not alter the expression of typical genes involved in drought tolerance. These results suggest that MIZ1 positively regulates hydrotropism at an early stage and its overexpression results in an enhancement of signal transduction unique to root hydrotropism to increase the degree of hydrotropic root bending.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions.

BACKGROUND AND AIMS Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assesse...

متن کامل

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

A gene essential for hydrotropism in roots.

Roots display hydrotropism in response to moisture gradients, which is thought to be important for controlling their growth orientation, obtaining water, and establishing their stand in the terrestrial environment. However, the molecular mechanism underlying hydrotropism remains unknown. Here, we report that roots of the Arabidopsis mutant mizu-kussei1 (miz1), which are impaired in hydrotropism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 53 11  شماره 

صفحات  -

تاریخ انتشار 2012